Paper Reading AI Learner

Impact of Labelled Set Selection and Supervision Policies on Semi-supervised Learning

2022-11-27 18:29:54
Shuvendu Roy, Ali Etemad

Abstract

In semi-supervised representation learning frameworks, when the number of labelled data is very scarce, the quality and representativeness of these samples become increasingly important. Existing literature on semi-supervised learning randomly sample a limited number of data points for labelling. All these labelled samples are then used along with the unlabelled data throughout the training process. In this work, we ask two important questions in this context: (1) does it matter which samples are selected for labelling? (2) does it matter how the labelled samples are used throughout the training process along with the unlabelled data? To answer the first question, we explore a number of unsupervised methods for selecting specific subsets of data to label (without prior knowledge of their labels), with the goal of maximizing representativeness w.r.t. the unlabelled set. Then, for our second line of inquiry, we define a variety of different label injection strategies in the training process. Extensive experiments on four popular datasets, CIFAR-10, CIFAR-100, SVHN, and STL-10, show that unsupervised selection of samples that are more representative of the entire data improves performance by up to ~2% over the existing semi-supervised frameworks such as MixMatch, ReMixMatch, FixMatch and others with random sample labelling. We show that this boost could even increase to 7.5% for very few-labelled scenarios. However, our study shows that gradually injecting the labels throughout the training procedure does not impact the performance considerably versus when all the existing labels are used throughout the entire training.

Abstract (translated)

URL

https://arxiv.org/abs/2211.14912

PDF

https://arxiv.org/pdf/2211.14912.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot