Paper Reading AI Learner

Exploring Faithful Rationale for Multi-hop Fact Verification via Salience-Aware Graph Learning

2022-12-02 09:54:05
Jiasheng Si, Yingjie Zhu, Deyu Zhou

Abstract

The opaqueness of the multi-hop fact verification model imposes imperative requirements for explainability. One feasible way is to extract rationales, a subset of inputs, where the performance of prediction drops dramatically when being removed. Though being explainable, most rationale extraction methods for multi-hop fact verification explore the semantic information within each piece of evidence individually, while ignoring the topological information interaction among different pieces of evidence. Intuitively, a faithful rationale bears complementary information being able to extract other rationales through the multi-hop reasoning process. To tackle such disadvantages, we cast explainable multi-hop fact verification as subgraph extraction, which can be solved based on graph convolutional network (GCN) with salience-aware graph learning. In specific, GCN is utilized to incorporate the topological interaction information among multiple pieces of evidence for learning evidence representation. Meanwhile, to alleviate the influence of noisy evidence, the salience-aware graph perturbation is induced into the message passing of GCN. Moreover, the multi-task model with three diagnostic properties of rationale is elaborately designed to improve the quality of an explanation without any explicit annotations. Experimental results on the FEVEROUS benchmark show significant gains over previous state-of-the-art methods for both rationale extraction and fact verification.

Abstract (translated)

URL

https://arxiv.org/abs/2212.01060

PDF

https://arxiv.org/pdf/2212.01060.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot