Paper Reading AI Learner

Kernel Inversed Pyramidal Resizing Network for Efficient Pavement Distress Recognition

2022-12-04 10:40:40
Rong Qin, Luwen Huangfu, Devon Hood, James Ma, Sheng Huang

Abstract

Pavement Distress Recognition (PDR) is an important step in pavement inspection and can be powered by image-based automation to expedite the process and reduce labor costs. Pavement images are often in high-resolution with a low ratio of distressed to non-distressed areas. Advanced approaches leverage these properties via dividing images into patches and explore discriminative features in the scale space. However, these approaches usually suffer from information loss during image resizing and low efficiency due to complex learning frameworks. In this paper, we propose a novel and efficient method for PDR. A light network named the Kernel Inversed Pyramidal Resizing Network (KIPRN) is introduced for image resizing, and can be flexibly plugged into the image classification network as a pre-network to exploit resolution and scale information. In KIPRN, pyramidal convolution and kernel inversed convolution are specifically designed to mine discriminative information across different feature granularities and scales. The mined information is passed along to the resized images to yield an informative image pyramid to assist the image classification network for PDR. We applied our method to three well-known Convolutional Neural Networks (CNNs), and conducted an evaluation on a large-scale pavement image dataset named CQU-BPDD. Extensive results demonstrate that KIPRN can generally improve the pavement distress recognition of these CNN models and show that the simple combination of KIPRN and EfficientNet-B3 significantly outperforms the state-of-the-art patch-based method in both performance and efficiency.

Abstract (translated)

URL

https://arxiv.org/abs/2212.01790

PDF

https://arxiv.org/pdf/2212.01790.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot