Paper Reading AI Learner

Fast and Lightweight Scene Regressor for Camera Relocalization

2022-12-04 14:41:20
Thuan B. Bui, Dinh-Tuan Tran, Joo-Ho Lee

Abstract

Camera relocalization involving a prior 3D reconstruction plays a crucial role in many mixed reality and robotics applications. Estimating the camera pose directly with respect to pre-built 3D models can be prohibitively expensive for several applications with limited storage and/or communication bandwidth. Although recent scene and absolute pose regression methods have become popular for efficient camera localization, most of them are computation-resource intensive and difficult to obtain a real-time inference with high accuracy constraints. This study proposes a simple scene regression method that requires only a multi-layer perceptron network for mapping scene coordinates to achieve accurate camera pose estimations. The proposed approach uses sparse descriptors to regress the scene coordinates, instead of a dense RGB image. The use of sparse features provides several advantages. First, the proposed regressor network is substantially smaller than those reported in previous studies. This makes our system highly efficient and scalable. Second, the pre-built 3D models provide the most reliable and robust 2D-3D matches. Therefore, learning from them can lead to an awareness of equivalent features and substantially improve the generalization performance. A detailed analysis of our approach and extensive evaluations using existing datasets are provided to support the proposed method. The implementation detail is available at this https URL

Abstract (translated)

URL

https://arxiv.org/abs/2212.01830

PDF

https://arxiv.org/pdf/2212.01830.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot