Paper Reading AI Learner

Evince the artifacts of Spoof Speech by blending Vocal Tract and Voice Source Features

2022-12-05 04:02:50
Tadipatri Uday Kiran Reddy, Sahukari Chaitanya Varun, Kota Pranav Kumar Sankala Sreekanth, Kodukula Sri Rama Murty

Abstract

With the rapid advancement in synthetic speech generation technologies, great interest in differentiating spoof speech from the natural speech is emerging in the research community. The identification of these synthetic signals is a difficult task not only for the cutting-edge classification models but also for humans themselves. To prevent potential adverse effects, it becomes crucial to detect spoof signals. From a forensics perspective, it is also important to predict the algorithm which generated them to identify the forger. This needs an understanding of the underlying attributes of spoof signals which serve as a signature for the synthesizer. This study emphasizes the segments of speech signals critical in identifying their authenticity by utilizing the Vocal Tract System(\textit{VTS}) and Voice Source(\textit{VS}) features. In this paper, we propose a system that detects spoof signals as well as identifies the corresponding speech-generating algorithm. We achieve 99.58\% in algorithm classification accuracy. From experiments, we found that a VS feature-based system gives more attention to the transition of phonemes, while, a VTS feature-based system gives more attention to stationary segments of speech signals. We perform model fusion techniques on the VS-based and VTS-based systems to exploit the complementary information to develop a robust classifier. Upon analyzing the confusion plots we found that WaveRNN is poorly classified depicting more naturalness. On the other hand, we identified that synthesizer like Waveform Concatenation, and Neural Source Filter is classified with the highest accuracy. Practical implications of this work can aid researchers from both forensics (leverage artifacts) and the speech communities (mitigate artifacts).

Abstract (translated)

URL

https://arxiv.org/abs/2212.02013

PDF

https://arxiv.org/pdf/2212.02013.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot