Paper Reading AI Learner

Continuous Trajectory Optimization via B-splines for Multi-jointed Robotic Systems

2022-12-20 18:16:25
Changhao Wang, Ting Xu, Masayoshi Tomizuka

Abstract

Continuous formulations of trajectory planning problems have two main benefits. First, constraints are guaranteed to be satisfied at all times. Secondly, dynamic obstacles can be naturally considered with time. This paper introduces a novel B-spline based trajectory optimization method for multi-jointed robots that provides a continuous trajectory with guaranteed continuous constraints satisfaction. At the core of this method, B-spline basic operations, like addition, multiplication, and derivative, are rigorously defined and applied for problem formulation. B-spline unique characteristics, such as the convex hull and smooth curves properties, are utilized to reformulate the original continuous optimization problem into a finite-dimensional problem. Collision avoidance with static obstacles is achieved using the signed distance field, while that with dynamic obstacles is accomplished via constructing time-varying separating hyperplanes. Simulation results on various robots validate the effectiveness of the algorithm. In addition, this paper provides experimental validations with a 6-link FANUC robot avoiding static and moving obstacles.

Abstract (translated)

URL

https://arxiv.org/abs/2212.10500

PDF

https://arxiv.org/pdf/2212.10500.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot