Paper Reading AI Learner

UnICLAM:Contrastive Representation Learning with Adversarial Masking for Unified and Interpretable Medical Vision Question Answering

2022-12-21 02:48:15
Chenlu Zhan, Peng Peng, Hongsen Wang, Tao Chen, Hongwei Wang

Abstract

Medical Visual Question Answering (Medical-VQA) aims to answer clinical questions regarding radiology images, assisting doctors with decision-making options. Nevertheless, current Medical-VQA models learn cross-modal representations through residing vision and texture encoders in dual separate spaces, which lead to indirect semantic alignment. In this paper, we propose UnICLAM, a Unified and Interpretable Medical-VQA model through Contrastive Representation Learning with Adversarial Masking. Specifically, to learn an aligned image-text representation, we first establish a unified dual-stream pre-training structure with the gradually soft-parameter sharing strategy. Technically, the proposed strategy learns a constraint for the vision and texture encoders to be close in a same space, which is gradually loosened as the higher number of layers. Moreover, for grasping the semantic representation, we extend the unified Adversarial Masking data augmentation strategy to the contrastive representation learning of vision and text in a unified manner, alleviating the meaningless of the commonly used random mask. Concretely, while the encoder training minimizes the distance between the original feature and the masking feature, the adversarial masking model keeps adversarial learning to conversely maximize the distance. Furthermore, we also intuitively take a further exploration of the unified adversarial masking strategy, which improves the potential ante-hoc interpretability with remarkable performance and efficiency. Experimental results on VQA-RAD and SLAKE public benchmarks demonstrate that UnICLAM outperforms the existing 11 state-of-the-art Medical-VQA models. More importantly, we make an additional discussion about the performance of UnICLAM in diagnosing heart failure, verifying that UnICLAM exhibits superior few-shot adaption performance in practical disease diagnosis.

Abstract (translated)

URL

https://arxiv.org/abs/2212.10729

PDF

https://arxiv.org/pdf/2212.10729.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot