Paper Reading AI Learner

Backward Curriculum Reinforcement Learning

2022-12-29 08:23:39
KyungMin Ko, Sajad Khodadadian, Siva Theja Maguluri

Abstract

The current reinforcement learning algorithm uses forward-generated trajectories to train the agent. The forward-generated trajectories give the agent little guidance, so the agent can explore as much as possible. While the appreciation of reinforcement learning comes from enough exploration, this gives the trade-off of losing sample efficiency. The sampling efficiency is an important factor that decides the performance of the algorithm. Past tasks use reward shaping techniques and changing the structure of the network to increase sample efficiency, however these methods require many steps to implement. In this work, we propose novel reverse curriculum reinforcement learning. Reverse curriculum learning starts training the agent using the backward trajectory of the episode rather than the original forward trajectory. This gives the agent a strong reward signal, so the agent can learn in a more sample-efficient manner. Moreover, our method only requires a minor change in algorithm, which is reversing the order of trajectory before training the agent. Therefore, it can be simply applied to any state-of-art algorithms.

Abstract (translated)

URL

https://arxiv.org/abs/2212.14214

PDF

https://arxiv.org/pdf/2212.14214.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot