Paper Reading AI Learner

Motion-based Post-Processing: Using Kalman Filter to Exclude Similar Targets in Underwater Object Tracking

2023-01-04 08:22:34
Yunfeng Li, Bo Wang, Ye Li, Wei Huo, Zhuoyan Liu

Abstract

Visual tracker includes network and post-processing. Despite the color distortion and low contrast of underwater images, advanced trackers can still be very competitive in underwater object tracking because deep learning empowers the networks to discriminate the appearance features of the target. However, underwater object tracking also faces another problem. Underwater targets such as fish and dolphins, usually appear in groups, and creatures of the same species usually have similar expressions of appearance features, so it is challenging to distinguish the weak differences characteristics only by the network itself. The existing detection-based post-processing only reflects the results of single frame detection, but cannot locate real targets among similar targets. In this paper, we propose a new post-processing strategy based on motion, which uses Kalman filter (KF) to maintain the motion information of the target and exclude similar targets around. Specifically, we use the KF predicted box and the candidate boxes in the response map and their confidence to calculate the candidate location score to find the real target. Our method does not change the network structure, nor does it perform additional training for the tracker. It can be quickly applied to other tracking fields with similar target problem. We improved SOTA trackers based on our method, and proved the effectiveness of our method on UOT100 and UTB180. The AUC of our method for OSTrack on similar subsequences is improved by more than 3% on average, and the precision and normalization precision are improved by more than 3.5% on average. It has been proved that our method has good compatibility in dealing with similar target problems and can enhance performance of the tracker together with other methods. More details can be found in: this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2301.01482

PDF

https://arxiv.org/pdf/2301.01482.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot