Paper Reading AI Learner

Enabling AI-Generated Content Services in Wireless Edge Networks

2023-01-09 09:30:23
Hongyang Du, Zonghang Li, Dusit Niyato, Jiawen Kang, Zehui Xiong, Xuemin (Sherman) Shen, Dong In Kim

Abstract

Artificial Intelligence-Generated Content (AIGC) refers to the use of AI to automate the information creation process while fulfilling the personalized requirements of users. However, due to the instability of AIGC models, e.g., the stochastic nature of diffusion models, the quality and accuracy of the generated content can vary significantly. In wireless edge networks, the transmission of incorrectly generated content may unnecessarily consume network resources. Thus, a dynamic AIGC service provider (ASP) selection scheme is required to enable users to connect to the most suited ASP, improving the users' satisfaction and quality of generated content. In this article, we first review the AIGC techniques and their applications in wireless networks. We then present the AIGC-as-a-service (AaaS) concept and discuss the challenges in deploying AaaS at the edge networks. Yet, it is essential to have performance metrics to evaluate the accuracy of AIGC services. Thus, we introduce several image-based perceived quality evaluation metrics. Then, we propose a general and effective model to illustrate the relationship between computational resources and user-perceived quality evaluation metrics. To achieve efficient AaaS and maximize the quality of generated content in wireless edge networks, we propose a deep reinforcement learning-enabled algorithm for optimal ASP selection. Simulation results show that the proposed algorithm can provide a higher quality of generated content to users and achieve fewer crashed tasks by comparing with four benchmarks, i.e., overloading-avoidance, random, round-robin policies, and the upper-bound schemes.

Abstract (translated)

URL

https://arxiv.org/abs/2301.03220

PDF

https://arxiv.org/pdf/2301.03220.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot