Paper Reading AI Learner

FGAHOI: Fine-Grained Anchors for Human-Object Interaction Detection

2023-01-08 03:53:50
Shuailei Ma, Yuefeng Wang, Shanze Wang, Ying Wei

Abstract

Human-Object Interaction (HOI), as an important problem in computer vision, requires locating the human-object pair and identifying the interactive relationships between them. The HOI instance has a greater span in spatial, scale, and task than the individual object instance, making its detection more susceptible to noisy backgrounds. To alleviate the disturbance of noisy backgrounds on HOI detection, it is necessary to consider the input image information to generate fine-grained anchors which are then leveraged to guide the detection of HOI instances. However, it is challenging for the following reasons. i) how to extract pivotal features from the images with complex background information is still an open question. ii) how to semantically align the extracted features and query embeddings is also a difficult issue. In this paper, a novel end-to-end transformer-based framework (FGAHOI) is proposed to alleviate the above problems. FGAHOI comprises three dedicated components namely, multi-scale sampling (MSS), hierarchical spatial-aware merging (HSAM) and task-aware merging mechanism (TAM). MSS extracts features of humans, objects and interaction areas from noisy backgrounds for HOI instances of various scales. HSAM and TAM semantically align and merge the extracted features and query embeddings in the hierarchical spatial and task perspectives in turn. In the meanwhile, a novel training strategy Stage-wise Training Strategy is designed to reduce the training pressure caused by overly complex tasks done by FGAHOI. In addition, we propose two ways to measure the difficulty of HOI detection and a novel dataset, i.e., HOI-SDC for the two challenges (Uneven Distributed Area in Human-Object Pairs and Long Distance Visual Modeling of Human-Object Pairs) of HOI instances detection.

Abstract (translated)

URL

https://arxiv.org/abs/2301.04019

PDF

https://arxiv.org/pdf/2301.04019.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot