Paper Reading AI Learner

Head-Free Lightweight Semantic Segmentation with Linear Transformer

2023-01-11 18:59:46
Bo Dong, Pichao Wang, Fan Wang

Abstract

Existing semantic segmentation works have been mainly focused on designing effective decoders; however, the computational load introduced by the overall structure has long been ignored, which hinders their applications on resource-constrained hardwares. In this paper, we propose a head-free lightweight architecture specifically for semantic segmentation, named Adaptive Frequency Transformer. It adopts a parallel architecture to leverage prototype representations as specific learnable local descriptions which replaces the decoder and preserves the rich image semantics on high-resolution features. Although removing the decoder compresses most of the computation, the accuracy of the parallel structure is still limited by low computational resources. Therefore, we employ heterogeneous operators (CNN and Vision Transformer) for pixel embedding and prototype representations to further save computational costs. Moreover, it is very difficult to linearize the complexity of the vision Transformer from the perspective of spatial domain. Due to the fact that semantic segmentation is very sensitive to frequency information, we construct a lightweight prototype learning block with adaptive frequency filter of complexity $O(n)$ to replace standard self attention with $O(n^{2})$. Extensive experiments on widely adopted datasets demonstrate that our model achieves superior accuracy while retaining only 3M parameters. On the ADE20K dataset, our model achieves 41.8 mIoU and 4.6 GFLOPs, which is 4.4 mIoU higher than Segformer, with 45% less GFLOPs. On the Cityscapes dataset, our model achieves 78.7 mIoU and 34.4 GFLOPs, which is 2.5 mIoU higher than Segformer with 72.5% less GFLOPs. Code is available at this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2301.04648

PDF

https://arxiv.org/pdf/2301.04648.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot