Paper Reading AI Learner

Decentralized iLQR for Cooperative Trajectory Planning of Connected Autonomous Vehicles via Dual Consensus ADMM

2023-01-11 10:18:01
Zhenmin Huang, Shaojie Shen, Jun Ma

Abstract

Developments in cooperative trajectory planning of connected autonomous vehicles (CAVs) have gathered considerable momentum and research attention. Generally, such problems present strong non-linearity and non-convexity, rendering great difficulties in finding the optimal solution. Existing methods typically suffer from low computational efficiency, and this hinders the appropriate applications in large-scale scenarios involving an increasing number of vehicles. To tackle this problem, we propose a novel decentralized iterative linear quadratic regulator (iLQR) algorithm by leveraging the dual consensus alternating direction method of multipliers (ADMM). First, the original non-convex optimization problem is reformulated into a series of convex optimization problems through iterative neighbourhood approximation. Then, the dual of each convex optimization problem is shown to have a consensus structure, which facilitates the use of consensus ADMM to solve for the dual solution in a fully decentralized and parallel architecture. Finally, the primal solution corresponding to the trajectory of each vehicle is recovered by solving a linear quadratic regulator (LQR) problem iteratively, and a novel trajectory update strategy is proposed to ensure the dynamic feasibility of vehicles. With the proposed development, the computation burden is significantly alleviated such that real-time performance is attainable. Two traffic scenarios are presented to validate the proposed algorithm, and thorough comparisons between our proposed method and baseline methods (including centralized iLQR, IPOPT, and SQP) are conducted to demonstrate the scalability of the proposed approach.

Abstract (translated)

URL

https://arxiv.org/abs/2301.04386

PDF

https://arxiv.org/pdf/2301.04386.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot