Paper Reading AI Learner

Improving Inference Performance of Machine Learning with the Divide-and-Conquer Principle

2023-01-12 15:55:12
Alex Kogan

Abstract

Many popular machine learning models scale poorly when deployed on CPUs. In this paper we explore the reasons why and propose a simple, yet effective approach based on the well-known Divide-and-Conquer Principle to tackle this problem of great practical importance. Given an inference job, instead of using all available computing resources (i.e., CPU cores) for running it, the idea is to break the job into independent parts that can be executed in parallel, each with the number of cores according to its expected computational cost. We implement this idea in the popular OnnxRuntime framework and evaluate its effectiveness with several use cases, including the well-known models for optical character recognition (PaddleOCR) and natural language processing (BERT).

Abstract (translated)

URL

https://arxiv.org/abs/2301.05099

PDF

https://arxiv.org/pdf/2301.05099.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot