Paper Reading AI Learner

$β$-DARTS++: Bi-level Regularization for Proxy-robust Differentiable Architecture Search

2023-01-16 12:30:32
Peng Ye, Tong He, Baopu Li, Tao Chen, Lei Bai, Wanli Ouyang

Abstract

Neural Architecture Search has attracted increasing attention in recent years. Among them, differential NAS approaches such as DARTS, have gained popularity for the search efficiency. However, they still suffer from three main issues, that are, the weak stability due to the performance collapse, the poor generalization ability of the searched architectures, and the inferior robustness to different kinds of proxies. To solve the stability and generalization problems, a simple-but-effective regularization method, termed as Beta-Decay, is proposed to regularize the DARTS-based NAS searching process (i.e., $\beta$-DARTS). Specifically, Beta-Decay regularization can impose constraints to keep the value and variance of activated architecture parameters from being too large, thereby ensuring fair competition among architecture parameters and making the supernet less sensitive to the impact of input on the operation set. In-depth theoretical analyses on how it works and why it works are provided. Comprehensive experiments validate that Beta-Decay regularization can help to stabilize the searching process and makes the searched network more transferable across different datasets. To address the robustness problem, we first benchmark different NAS methods under a wide range of proxy data, proxy channels, proxy layers and proxy epochs, since the robustness of NAS under different kinds of proxies has not been explored before. We then conclude some interesting findings and find that $\beta$-DARTS always achieves the best result among all compared NAS methods under almost all proxies. We further introduce the novel flooding regularization to the weight optimization of $\beta$-DARTS (i.e., Bi-level regularization), and experimentally and theoretically verify its effectiveness for improving the proxy robustness of differentiable NAS.

Abstract (translated)

URL

https://arxiv.org/abs/2301.06393

PDF

https://arxiv.org/pdf/2301.06393.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot