Paper Reading AI Learner

DarkVision: A Benchmark for Low-light Image/Video Perception

2023-01-16 05:55:59
Bo Zhang, Yuchen Guo, Runzhao Yang, Zhihong Zhang, Jiayi Xie, Jinli Suo, Qionghai Dai

Abstract

Imaging and perception in photon-limited scenarios is necessary for various applications, e.g., night surveillance or photography, high-speed photography, and autonomous driving. In these cases, cameras suffer from low signal-to-noise ratio, which degrades the image quality severely and poses challenges for downstream high-level vision tasks like object detection and recognition. Data-driven methods have achieved enormous success in both image restoration and high-level vision tasks. However, the lack of high-quality benchmark dataset with task-specific accurate annotations for photon-limited images/videos delays the research progress heavily. In this paper, we contribute the first multi-illuminance, multi-camera, and low-light dataset, named DarkVision, serving for both image enhancement and object detection. We provide bright and dark pairs with pixel-wise registration, in which the bright counterpart provides reliable reference for restoration and annotation. The dataset consists of bright-dark pairs of 900 static scenes with objects from 15 categories, and 32 dynamic scenes with 4-category objects. For each scene, images/videos were captured at 5 illuminance levels using three cameras of different grades, and average photons can be reliably estimated from the calibration data for quantitative studies. The static-scene images and dynamic videos respectively contain around 7,344 and 320,667 instances in total. With DarkVision, we established baselines for image/video enhancement and object detection by representative algorithms. To demonstrate an exemplary application of DarkVision, we propose two simple yet effective approaches for improving performance in video enhancement and object detection respectively. We believe DarkVision would advance the state-of-the-arts in both imaging and related computer vision tasks in low-light environment.

Abstract (translated)

URL

https://arxiv.org/abs/2301.06269

PDF

https://arxiv.org/pdf/2301.06269.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot