Paper Reading AI Learner

Training one model to detect heart and lung sound events from single point auscultations

2023-01-15 12:13:03
Leander Melms, Robert R. Ilesan, Ulrich Köhler, Olaf Hildebrandt, Regina Conradt, Jens Eckstein, Cihan Atila, Sami Matrood, Bernhard Schieffer, Jürgen R. Schaefer, Tobias Müller, Julius Obergassel, Nadine Schlicker, Martin C. Hirsch

Abstract

Objective: This work proposes a semi-supervised training approach for detecting lung and heart sounds simultaneously with only one trained model and in invariance to the auscultation point. Methods: We use open-access data from the 2016 Physionet/CinC Challenge, the 2022 George Moody Challenge, and from the lung sound database HF_V1. We first train specialist single-task models using foreground ground truth (GT) labels from different auscultation databases to identify background sound events in the respective lung and heart auscultation databases. The pseudo-labels generated in this way were combined with the ground truth labels in a new training iteration, such that a new model was subsequently trained to detect foreground and background signals. Benchmark tests ensured that the newly trained model could detect both, lung, and heart sound events in different auscultation sites without regressing on the original task. We also established hand-validated labels for the respective background signal in heart and lung sound auscultations to evaluate the models. Results: In this work, we report for the first time results for i) a multi-class prediction for lung sound events and ii) for simultaneous detection of heart and lung sound events and achieve competitive results using only one model. The combined multi-task model regressed slightly in heart sound detection and gained significantly in lung sound detection accuracy with an overall macro F1 score of 39.2% over six classes, representing a 6.7% improvement over the single-task baseline models. Conclusion/Significance: To the best of our knowledge, this is the first approach developed to date for measuring heart and lung sound events invariant to both, the auscultation site and capturing device. Hence, our model is capable of performing lung and heart sound detection from any auscultation location.

Abstract (translated)

URL

https://arxiv.org/abs/2301.06078

PDF

https://arxiv.org/pdf/2301.06078.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot