Paper Reading AI Learner

Development, Optimization, and Deployment of Thermal Forward Vision Systems for Advance Vehicular Applications on Edge Devices

2023-01-18 15:45:33
Muhammad Ali Farooq, Waseem Shariff, Faisal Khan, Peter Corcoran

Abstract

In this research work, we have proposed a thermal tiny-YOLO multi-class object detection (TTYMOD) system as a smart forward sensing system that should remain effective in all weather and harsh environmental conditions using an end-to-end YOLO deep learning framework. It provides enhanced safety and improved awareness features for driver assistance. The system is trained on large-scale thermal public datasets as well as newly gathered novel open-sourced dataset comprising of more than 35,000 distinct thermal frames. For optimal training and convergence of YOLO-v5 tiny network variant on thermal data, we have employed different optimizers which include stochastic decent gradient (SGD), Adam, and its variant AdamW which has an improved implementation of weight decay. The performance of thermally tuned tiny architecture is further evaluated on the public as well as locally gathered test data in diversified and challenging weather and environmental conditions. The efficacy of a thermally tuned nano network is quantified using various qualitative metrics which include mean average precision, frames per second rate, and average inference time. Experimental outcomes show that the network achieved the best mAP of 56.4% with an average inference time/ frame of 4 milliseconds. The study further incorporates optimization of tiny network variant using the TensorFlow Lite quantization tool this is beneficial for the deployment of deep learning architectures on the edge and mobile devices. For this study, we have used a raspberry pi 4 computing board for evaluating the real-time feasibility performance of an optimized version of the thermal object detection network for the automotive sensor suite. The source code, trained and optimized models and complete validation/ testing results are publicly available at this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2301.07613

PDF

https://arxiv.org/pdf/2301.07613.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot