Paper Reading AI Learner

Exploring Active 3D Object Detection from a Generalization Perspective

2023-01-23 02:43:03
Yadan Luo, Zhuoxiao Chen, Zijian Wang, Xin Yu, Zi Huang, Mahsa Baktashmotlagh

Abstract

To alleviate the high annotation cost in LiDAR-based 3D object detection, active learning is a promising solution that learns to select only a small portion of unlabeled data to annotate, without compromising model performance. Our empirical study, however, suggests that mainstream uncertainty-based and diversity-based active learning policies are not effective when applied in the 3D detection task, as they fail to balance the trade-off between point cloud informativeness and box-level annotation costs. To overcome this limitation, we jointly investigate three novel criteria in our framework Crb for point cloud acquisition - label conciseness}, feature representativeness and geometric balance, which hierarchically filters out the point clouds of redundant 3D bounding box labels, latent features and geometric characteristics (e.g., point cloud density) from the unlabeled sample pool and greedily selects informative ones with fewer objects to annotate. Our theoretical analysis demonstrates that the proposed criteria align the marginal distributions of the selected subset and the prior distributions of the unseen test set, and minimizes the upper bound of the generalization error. To validate the effectiveness and applicability of \textsc{Crb}, we conduct extensive experiments on the two benchmark 3D object detection datasets of KITTI and Waymo and examine both one-stage (\textit{i.e.}, \textsc{Second}) and two-stage 3D detectors (i.e., Pv-rcnn). Experiments evidence that the proposed approach outperforms existing active learning strategies and achieves fully supervised performance requiring $1\%$ and $8\%$ annotations of bounding boxes and point clouds, respectively. Source code: this https URL.

Abstract (translated)

URL

https://arxiv.org/abs/2301.09249

PDF

https://arxiv.org/pdf/2301.09249.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot