Paper Reading AI Learner

Hybrid Binary Networks: Optimizing for Accuracy, Efficiency and Memory

2018-04-11 08:27:49
Ameya Prabhu, Vishal Batchu, Rohit Gajawada, Sri Aurobindo Munagala, Anoop Namboodiri

Abstract

Binarization is an extreme network compression approach that provides large computational speedups along with energy and memory savings, albeit at significant accuracy costs. We investigate the question of where to binarize inputs at layer-level granularity and show that selectively binarizing the inputs to specific layers in the network could lead to significant improvements in accuracy while preserving most of the advantages of binarization. We analyze the binarization tradeoff using a metric that jointly models the input binarization-error and computational cost and introduce an efficient algorithm to select layers whose inputs are to be binarized. Practical guidelines based on insights obtained from applying the algorithm to a variety of models are discussed. Experiments on Imagenet dataset using AlexNet and ResNet-18 models show 3-4% improvements in accuracy over fully binarized networks with minimal impact on compression and computational speed. The improvements are even more substantial on sketch datasets like TU-Berlin, where we match state-of-the-art accuracy as well, getting over 8% increase in accuracies. We further show that our approach can be applied in tandem with other forms of compression that deal with individual layers or overall model compression (e.g., SqueezeNets). Unlike previous quantization approaches, we are able to binarize the weights in the last layers of a network, which often have a large number of parameters, resulting in significant improvement in accuracy over fully binarized models.

Abstract (translated)

URL

https://arxiv.org/abs/1804.03867

PDF

https://arxiv.org/pdf/1804.03867.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot