Paper Reading AI Learner

Total Denoising: Unsupervised Learning of 3D Point Cloud Cleaning

2019-04-16 12:11:26
Pedro Hermosilla, Tobias Ritschel, Timo Ropinski

Abstract

We show that denoising of 3D point clouds can be learned unsupervised, directly from noisy 3D point cloud data only. This is achieved by extending recent ideas from learning of unsupervised image denoisers to unstructured 3D point clouds. Unsupervised image denoisers operate under the assumption that a noisy pixel observation is a random realization of a distribution around a clean pixel value, which allows appropriate learning on this distribution to eventually converge to the correct value. Regrettably, this assumption is not valid for unstructured points: 3D point clouds are subject to total noise, i. e., deviations in all coordinates, with no reliable pixel grid. Thus, an observation can be the realization of an entire manifold of clean 3D points, which makes a na\"ive extension of unsupervised image denoisers to 3D point clouds impractical. Overcoming this, we introduce a spatial prior term, that steers converges to the unique closest out of the many possible modes on a manifold. Our results demonstrate unsupervised denoising performance similar to that of supervised learning with clean data when given enough training examples - whereby we do not need any pairs of noisy and clean training data.

Abstract (translated)

我们表明,三维点云的去噪可以在无监督的情况下直接从有噪声的三维点云数据中学习。这是通过将最近的思想从学习无监督图像去噪扩展到非结构化三维点云来实现的。无监督图像去噪器的工作假设是噪声像素观测是围绕干净像素值随机实现分布,这允许对该分布的适当学习最终收敛到正确的值。遗憾的是,这种假设对非结构化点无效:三维点云受到总噪声的影响,即所有坐标的偏差,没有可靠的像素网格。因此,一个观察可以实现一个干净的三维点的整个流形,这使得无监督图像去噪到三维点云的自然扩展不切实际。克服这一点,我们引入了一个空间先验项,该项将转向流形上许多可能模式中最接近的唯一模式。我们的结果表明,在给出足够的训练示例时,无监督的去噪性能类似于有监督的使用干净数据的学习,因此我们不需要任何一对噪音和干净的训练数据。

URL

https://arxiv.org/abs/1904.07615

PDF

https://arxiv.org/pdf/1904.07615.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot