Paper Reading AI Learner

C-RAN with Hybrid RF/FSO Fronthaul Links: Joint Optimization of RF Time Allocation and Fronthaul Compression

2018-08-15 09:05:50
Marzieh Najafi, Vahid Jamali, Derrick Wing Kwan Ng, Robert Schober

Abstract

This paper considers the uplink of a cloud radio access network (C-RAN) comprised of several multi-antenna remote radio units (RUs) which compress the signals that they receive from multiple mobile users (MUs) and forward them to a CU via wireless fronthaul links. To enable reliable high rate fronthaul links, we employ a hybrid radio frequency (RF)/free space optical (FSO) system for fronthauling. To strike a balance between complexity and performance, we consider three different quantization schemes at the RUs, namely per-antenna vector quantization (AVQ), per-RU vector quantization (RVQ), and distributed source coding (DSC), and two different receivers at the CU, namely the linear minimum mean square error receiver and the optimal successive interference cancellation receiver. For this network architecture, we investigate the joint optimization of the quantization noise covariance matrices at the RUs and the RF time allocation to the multiple-access and fronthaul links for rate region maximization. To this end, we formulate a unified weighted sum rate maximization problem valid for each possible pair of the considered quantization and detection schemes. To handle the non-convexity of the unified problem, we transform it into a bi-convex problem which facilitates the derivation of an efficient suboptimal solution using alternating convex optimization and golden section search. Our simulation results show that for each pair of the considered quantization and detection schemes, C-RAN with hybrid RF/FSO fronthauling can achieve a considerable sum rate gain compared to conventional systems employing pure FSO fronthauling, especially under unfavorable atmospheric conditions. Moreover, employing a more sophisticated quantization scheme can significantly improve the system performance under adverse atmospheric conditions.

Abstract (translated)

URL

https://arxiv.org/abs/1808.05004

PDF

https://arxiv.org/pdf/1808.05004.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot