Paper Reading AI Learner

Pseudo-labels for Supervised Learning on Dynamic Vision Sensor Data, Applied to Object Detection under Ego-motion

2018-03-14 12:13:18
Nicholas F. Y. Chen

Abstract

In recent years, dynamic vision sensors (DVS), also known as event-based cameras or neuromorphic sensors, have seen increased use due to various advantages over conventional frame-based cameras. Using principles inspired by the retina, its high temporal resolution overcomes motion blurring, its high dynamic range overcomes extreme illumination conditions and its low power consumption makes it ideal for embedded systems on platforms such as drones and self-driving cars. However, event-based data sets are scarce and labels are even rarer for tasks such as object detection. We transferred discriminative knowledge from a state-of-the-art frame-based convolutional neural network (CNN) to the event-based modality via intermediate pseudo-labels, which are used as targets for supervised learning. We show, for the first time, event-based car detection under ego-motion in a real environment at 100 frames per second with a test average precision of 40.3% relative to our annotated ground truth. The event-based car detector handles motion blur and poor illumination conditions despite not explicitly trained to do so, and even complements frame-based CNN detectors, suggesting that it has learnt generalized visual representations.

Abstract (translated)

URL

https://arxiv.org/abs/1709.09323

PDF

https://arxiv.org/pdf/1709.09323


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Attention Autonomous Bert Boundary_Detection Caption Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Drone Dynamic_Memory_Network Edge_Detection Embedding Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot