Paper Reading AI Learner

Unlocking the Power of Large Language Models for Entity Alignment

2024-02-23 01:55:35
Xuhui Jiang, Yinghan Shen, Zhichao Shi, Chengjin Xu, Wei Li, Zixuan Li, Jian Guo, Huawei Shen, Yuanzhuo Wang

Abstract

Entity Alignment (EA) is vital for integrating diverse knowledge graph (KG) data, playing a crucial role in data-driven AI applications. Traditional EA methods primarily rely on comparing entity embeddings, but their effectiveness is constrained by the limited input KG data and the capabilities of the representation learning techniques. Against this backdrop, we introduce ChatEA, an innovative framework that incorporates large language models (LLMs) to improve EA. To address the constraints of limited input KG data, ChatEA introduces a KG-code translation module that translates KG structures into a format understandable by LLMs, thereby allowing LLMs to utilize their extensive background knowledge to improve EA accuracy. To overcome the over-reliance on entity embedding comparisons, ChatEA implements a two-stage EA strategy that capitalizes on LLMs' capability for multi-step reasoning in a dialogue format, thereby enhancing accuracy while preserving efficiency. Our experimental results affirm ChatEA's superior performance, highlighting LLMs' potential in facilitating EA tasks.

Abstract (translated)

实体对齐(EA)对于整合多样化的知识图(KG)数据,在数据驱动的人工智能应用中具有关键作用。传统的EA方法主要依赖比较实体嵌入,但它们的有效性受到有限输入KG数据和表示学习技术的限制。面对这一背景,我们引入了ChatEA,一种创新框架,它将大型语言模型(LLMs)集成其中,以改善EA。为了应对有限输入KG数据的限制,ChatEA引入了一个KG代码转换模块,将KG结构转换为LLMs可理解的格式,从而使LLMs能够利用其广泛的背景知识来提高EA的准确性。为了克服对实体嵌入比较的过度依赖,ChatEA实现了一种两阶段EA策略,利用LLMs在对话格式下进行多步推理的能力,从而在提高准确性的同时保持效率。我们的实验结果证实了ChatEA的优越性能,突出了LLMs在促进EA任务中的潜在作用。

URL

https://arxiv.org/abs/2402.15048

PDF

https://arxiv.org/pdf/2402.15048.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot