Paper Reading AI Learner

Unlocking the Power of Large Language Models for Entity Alignment

2024-02-23 01:55:35
Xuhui Jiang, Yinghan Shen, Zhichao Shi, Chengjin Xu, Wei Li, Zixuan Li, Jian Guo, Huawei Shen, Yuanzhuo Wang


Entity Alignment (EA) is vital for integrating diverse knowledge graph (KG) data, playing a crucial role in data-driven AI applications. Traditional EA methods primarily rely on comparing entity embeddings, but their effectiveness is constrained by the limited input KG data and the capabilities of the representation learning techniques. Against this backdrop, we introduce ChatEA, an innovative framework that incorporates large language models (LLMs) to improve EA. To address the constraints of limited input KG data, ChatEA introduces a KG-code translation module that translates KG structures into a format understandable by LLMs, thereby allowing LLMs to utilize their extensive background knowledge to improve EA accuracy. To overcome the over-reliance on entity embedding comparisons, ChatEA implements a two-stage EA strategy that capitalizes on LLMs' capability for multi-step reasoning in a dialogue format, thereby enhancing accuracy while preserving efficiency. Our experimental results affirm ChatEA's superior performance, highlighting LLMs' potential in facilitating EA tasks.

Abstract (translated)




3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot