Paper Reading AI Learner

Multi-Task Learning Using Uncertainty to Weigh Losses for Heterogeneous Face Attribute Estimation

2024-03-01 14:39:15
Huaqing Yuan, Yi He, Peng Du, Lu Song


Face images contain a wide variety of attribute information. In this paper, we propose a generalized framework for joint estimation of ordinal and nominal attributes based on information sharing. We tackle the correlation problem between heterogeneous attributes using hard parameter sharing of shallow features, and trade-off multiple loss functions by considering homoskedastic uncertainty for each attribute estimation task. This leads to optimal estimation of multiple attributes of the face and reduces the training cost of multitask learning. Experimental results on benchmarks with multiple face attributes show that the proposed approach has superior performance compared to state of the art. Finally, we discuss the bias issues arising from the proposed approach in face attribute estimation and validate its feasibility on edge systems.

Abstract (translated)




3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot