Paper Reading AI Learner

Complete and Near-Optimal Robotic Crack Coverage and Filling in Civil Infrastructure

2024-03-01 15:38:26
Vishnu Veeraraghavan, Kyle Hunte, Jingang Yi, Kaiyan Yu

Abstract

We present a simultaneous sensor-based inspection and footprint coverage (SIFC) planning and control design with applications to autonomous robotic crack mapping and filling. The main challenge of the SIFC problem lies in the coupling of complete sensing (for mapping) and robotic footprint (for filling) coverage tasks. Initially, we assume known target information (e.g., crack) and employ classic cell decomposition methods to achieve complete sensing coverage of the workspace and complete robotic footprint coverage using the least-cost route. Subsequently, we generalize the algorithm to handle unknown target information, allowing the robot to scan and incrementally construct the target graph online while conducting robotic footprint coverage. The online polynomial-time SIFC planning algorithm minimizes the total robot traveling distance, guarantees complete sensing coverage of the entire workspace, and achieves near-optimal robotic footprint coverage, as demonstrated through empirical experiments. For the demonstrated application, we design coordinated nozzle motion control with the planned robot trajectory to efficiently fill all cracks within the robot's footprint. Experimental results are presented to illustrate the algorithm's design, performance, and comparisons. The SIFC algorithm offers a high-efficiency motion planning solution for various robotic applications requiring simultaneous sensing and actuation coverage.

Abstract (translated)

我们提出了一个同时基于传感器和足迹覆盖(SIFC)规划与控制设计,应用于自主机器人裂纹建模和填充。SIFC问题的主要挑战在于将完整的感测(用于映射)和机器人足迹(用于填充)覆盖任务耦合起来。首先,我们假设已知目标信息(例如裂纹)并采用经典单元分解方法实现对工作空间的完整感测覆盖和对机器人足迹覆盖的最小成本路线。随后,我们将算法扩展以处理未知目标信息,使机器人能够在进行机器人足迹覆盖的同时在线构建目标图。在线多项式时间SIFC规划算法最小化总机器人行驶距离,确保整个工作空间的完整感测覆盖,并实现近最优机器人足迹覆盖,通过实验结果证明了这一点。为了演示应用,我们设计了与计划机器人轨迹协调的喷嘴运动控制,以有效地填充机器人足迹范围内的所有裂纹。实验结果展示了算法的设计、性能和比较。SIFC算法为各种机器人应用提供了一个高效的运动规划解决方案,这些应用需要同时进行感测和操作覆盖。

URL

https://arxiv.org/abs/2403.00613

PDF

https://arxiv.org/pdf/2403.00613.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot