Paper Reading AI Learner

Gesture-Controlled Aerial Robot Formation for Human-Swarm Interaction in Safety Monitoring Applications

2024-03-22 16:39:13
Vít Krátký, Giuseppe Silano, Matouš Vrba, Christos Papaioannidis, Ioannis Mademlis, Robert Pěnička, Ioannis Pitas, Martin Saska

Abstract

This paper presents a formation control approach for contactless gesture-based Human-Swarm Interaction (HSI) between a team of multi-rotor Unmanned Aerial Vehicles (UAVs) and a human worker. The approach is intended for monitoring the safety of human workers, especially those working at heights. In the proposed dynamic formation scheme, one UAV acts as the leader of the formation and is equipped with sensors for human worker detection and gesture recognition. The follower UAVs maintain a predetermined formation relative to the worker's position, thereby providing additional perspectives of the monitored scene. Hand gestures allow the human worker to specify movements and action commands for the UAV team and initiate other mission-related commands without the need for an additional communication channel or specific markers. Together with a novel unified human detection and tracking algorithm, human pose estimation approach and gesture detection pipeline, the proposed approach forms a first instance of an HSI system incorporating all these modules onboard real-world UAVs. Simulations and field experiments with three UAVs and a human worker in a mock-up scenario showcase the effectiveness and responsiveness of the proposed approach.

Abstract (translated)

本文提出了一种多旋翼无人机(UAV)与人类工人之间的非接触式手势交互(HSI)形式控制方法。该方法旨在监测人类工人的安全,特别是那些在高度上工作的人类工人。在拟议的动态编队方案中,一个UAV充当编队领导者,并配备有人体工人检测和手势识别传感器。跟踪UAV相对于工人位置的预设编队,从而提供了额外的场景视角。手势允许人类工人指定无人机的团队运动和动作命令,并发起与任务相关的命令,而无需额外的通信渠道或特定标记。与新颖的统一人体检测和跟踪算法、人体姿势估计方法和手势检测流程相结合,所提出的方案成为了一种车载真实世界UAV的HSI系统的第一个实例。通过模拟和模型场景中的实验,展示了所提出方法的有效性和响应性。

URL

https://arxiv.org/abs/2403.15333

PDF

https://arxiv.org/pdf/2403.15333.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot