Paper Reading AI Learner

ResNet with Integrated Convolutional Block Attention Module for Ship Classification Using Transfer Learning on Optical Satellite Imagery

2024-04-02 17:48:46
Ryan Donghan Kwon, Gangjoo Robin Nam, Jisoo Tak, Yeom Hyeok, Junseob Shin, Hyerin Cha, Kim Soo Bin


This study proposes a novel transfer learning framework for effective ship classification using high-resolution optical remote sensing satellite imagery. The framework is based on the deep convolutional neural network model ResNet50 and incorporates the Convolutional Block Attention Module (CBAM) to enhance performance. CBAM enables the model to attend to salient features in the images, allowing it to better discriminate between subtle differences between ships and backgrounds. Furthermore, this study adopts a transfer learning approach tailored for accurately classifying diverse types of ships by fine-tuning a pre-trained model for the specific task. Experimental results demonstrate the efficacy of the proposed framework in ship classification using optical remote sensing imagery, achieving a high classification accuracy of 94% across 5 classes, outperforming existing methods. This research holds potential applications in maritime surveillance and management, illegal fishing detection, and maritime traffic monitoring.

Abstract (translated)




3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot