Paper Reading AI Learner

Optimization-Based System Identification and Moving Horizon Estimation Using Low-Cost Sensors for a Miniature Car-Like Robot

2024-04-12 09:57:28
Sabrina Bodmer, Lukas Vogel, Simon Muntwiler, Alexander Hansson, Tobias Bodewig, Jonas Wahlen, Melanie N. Zeilinger, Andrea Carron

Abstract

This paper presents an open-source miniature car-like robot with low-cost sensing and a pipeline for optimization-based system identification, state estimation, and control. The overall robotics platform comes at a cost of less than $700 and thus significantly simplifies the verification of advanced algorithms in a realistic setting. We present a modified bicycle model with Pacejka tire forces to model the dynamics of the considered all-wheel drive vehicle and to prevent singularities of the model at low velocities. Furthermore, we provide an optimization-based system identification approach and a moving horizon estimation (MHE) scheme. In extensive hardware experiments, we show that the presented system identification approach results in a model with high prediction accuracy, while the MHE results in accurate state estimates. Finally, the overall closed-loop system is shown to perform well even in the presence of sensor failure for limited time intervals. All hardware, firmware, and control and estimation software is released under a BSD 2-clause license to promote widespread adoption and collaboration within the community.

Abstract (translated)

本文介绍了一种低成本、可开源的微型车类机器人,具有用于优化基于系统识别、状态估计和控制的管道。总体机器人平台成本低于700美元,因此显著简化了在现实环境中验证先进算法的复杂性。我们提出了一个带有Pacejka轮胎负荷的修改后的自行车模型来模拟所考虑的全轮驱动车辆的动力学,并防止低速时模型的 singularities。此外,我们还提供了基于优化的系统识别方法和移动目标估计(MHE)方案。在广泛的硬件实验中,我们证明了所提出的系统识别方法具有高预测精度,而MHE则具有准确的状态估计。最后,我们展示了整个闭环系统在传感器故障存在的情况下也能表现良好,尤其是在有限的时间间隔内。所有硬件、固件和控制和估计软件都通过BSD 2-条款许可发布,以促进社区内的广泛采用和合作。

URL

https://arxiv.org/abs/2404.08362

PDF

https://arxiv.org/pdf/2404.08362.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot