Paper Reading AI Learner

Ephemeral Myographic Motion: Repurposing the Myo Armband to Control Disposable Pneumatic Sculptures

2024-04-11 18:09:00
Celia Chen, Alex Leitch

Abstract

This paper details the development of an interactive sculpture built from deprecated hardware technology and intentionally decomposable, transient materials. We detail a case study of "Strain" - an emotive prototype that reclaims two orphaned digital artifacts to power a kinetic sculpture made of common disposable objects. We use the Myo, an abandoned myoelectric armband, in concert with the Programmable Air, a soft-robotics prototyping project, to manipulate a pneumatic bladder array constructed from condoms, bamboo skewers, and a small library of 3D printed PLA plastic connectors designed to work with these generic parts. The resulting sculpture achieves surprisingly organic actuation. The goal of this project is to produce several reusable components: software to resuscitate the Myo Armband, homeostasis software for the Programmable Air or equivalent pneumatic projects, and a library of easily-printed parts that will work with generic bamboo disposables for sculptural prototyping. This project works to develop usable, repeatable engineering by applying it to a slightly whimsical object that promotes a strong emotional response in its audience. Through this, we transform the disposable into the sustainable. In this paper, we reflect on project-based insights into rescuing and revitalizing abandoned consumer electronics for future works.

Abstract (translated)

本论文详细描述了使用过时硬件技术和有意分解的、可降解的临时性材料开发交互式雕塑的过程。"Strain" - 一个情感化的原型,重新回收了两件孤儿数字艺术品,为用普通一次性 objects 制成的动态雕塑提供动力。我们使用 Myo,一个废弃的 myoelectric 手套,与 Programmable Air 软机器人原型项目协同工作,通过操纵由避孕套、竹签和小型 3D 打印 PLA 塑料连接器构建的气动膀胱阵列,实现了惊人的有机操作。该雕塑达到了令人惊讶的有机响应。 本项目旨在生产几个可重复使用的组件:Myo Armband 的软件以重新激活,Programmable Air 的自稳软件或同等气动项目,以及与通用竹一次性消费品配合使用的库,以便进行雕塑原型制作。通过将此项目应用于略带幽默的对象,我们通过应用它来促进观众强烈的情感反应,将废旧消费电子产品转化为可持续产品。 本文回顾了在拯救和重塑废弃消费电子项目方面基于项目的见解。

URL

https://arxiv.org/abs/2404.08065

PDF

https://arxiv.org/pdf/2404.08065.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot