Paper Reading AI Learner

Automated Federated Learning via Informed Pruning

2024-05-16 17:27:41
Christian Intern\`o, Elena Raponi, Niki van Stein, Thomas B\"ack, Markus Olhofer, Yaochu Jin, Barbara Hammer


Federated learning (FL) represents a pivotal shift in machine learning (ML) as it enables collaborative training of local ML models coordinated by a central aggregator, all without the need to exchange local data. However, its application on edge devices is hindered by limited computational capabilities and data communication challenges, compounded by the inherent complexity of Deep Learning (DL) models. Model pruning is identified as a key technique for compressing DL models on devices with limited resources. Nonetheless, conventional pruning techniques typically rely on manually crafted heuristics and demand human expertise to achieve a balance between model size, speed, and accuracy, often resulting in sub-optimal solutions. In this study, we introduce an automated federated learning approach utilizing informed pruning, called AutoFLIP, which dynamically prunes and compresses DL models within both the local clients and the global server. It leverages a federated loss exploration phase to investigate model gradient behavior across diverse datasets and losses, providing insights into parameter significance. Our experiments showcase notable enhancements in scenarios with strong non-IID data, underscoring AutoFLIP's capacity to tackle computational constraints and achieve superior global convergence.

Abstract (translated)

联邦学习(FL)在机器学习(ML)中具有关键性的转变,因为它允许由中央聚合器协调本地ML模型的协同训练,而无需交换本地数据。然而,在边缘设备上应用FL存在计算能力和数据通信挑战的限制,再加上Deep Learning(DL)模型的固有复杂性。模型剪枝被认为是压缩具有有限资源设备的DL模型的关键技术。然而,传统的剪枝技术通常依赖于人工创建的启发式,并需要人类专业知识来达到模型大小、速度和准确性的平衡,往往导致次优解决方案。在本研究中,我们引入了一种自动化的联邦学习方法,利用智能剪枝,称为AutoFLIP,它可以在本地客户端和全局服务器上动态地剪枝和压缩DL模型。它利用联邦损失探索阶段研究了模型梯度行为,提供了对参数重要性的洞察。我们的实验展示了在具有强大非IID数据的情况下显著的增强,突出了AutoFLIP解决计算限制和实现卓越全局收敛的能力。



3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot