Paper Reading AI Learner

Revisiting OPRO: The Limitations of Small-Scale LLMs as Optimizers

2024-05-16 17:33:50
Tuo Zhang, Jinyue Yuan, Salman Avestimehr

Abstract

Numerous recent works aim to enhance the efficacy of Large Language Models (LLMs) through strategic prompting. In particular, the Optimization by PROmpting (OPRO) approach provides state-of-the-art performance by leveraging LLMs as optimizers where the optimization task is to find instructions that maximize the task accuracy. In this paper, we revisit OPRO for automated prompting with relatively small-scale LLMs, such as LLaMa-2 family and Mistral 7B. Our investigation reveals that OPRO shows limited effectiveness in small-scale LLMs, with limited inference capabilities constraining optimization ability. We suggest future automatic prompting engineering to consider both model capabilities and computational costs. Additionally, for small-scale LLMs, we recommend direct instructions that clearly outline objectives and methodologies as robust prompt baselines, ensuring efficient and effective prompt engineering in ongoing research.

Abstract (translated)

许多最近的工作旨在通过策略提示增强大型语言模型(LLMs)的效率。特别是,通过利用LLM作为优化器,Proof of Programming (OPRO)方法在优化任务中提供了最先进的性能。在本文中,我们重新审视了OPROMpting (OPR)方法用于自动提示相对较小的LLM,如LLLaMa-2系列和Mistral 7B。我们的调查显示,在小型LLM上,OPROMpting的优化效果有限,有限的语言能力限制了优化能力。我们建议,在未来的自动提示工程中,要考虑模型的特性和计算成本。此外,对于小型LLM,我们建议使用明确说明要达到的目标和方法的直接指令作为稳健的提示基础,以确保在 ongoing研究中有高效的和有效的提示工程。

URL

https://arxiv.org/abs/2405.10276

PDF

https://arxiv.org/pdf/2405.10276.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot