Abstract
Numerous recent works aim to enhance the efficacy of Large Language Models (LLMs) through strategic prompting. In particular, the Optimization by PROmpting (OPRO) approach provides state-of-the-art performance by leveraging LLMs as optimizers where the optimization task is to find instructions that maximize the task accuracy. In this paper, we revisit OPRO for automated prompting with relatively small-scale LLMs, such as LLaMa-2 family and Mistral 7B. Our investigation reveals that OPRO shows limited effectiveness in small-scale LLMs, with limited inference capabilities constraining optimization ability. We suggest future automatic prompting engineering to consider both model capabilities and computational costs. Additionally, for small-scale LLMs, we recommend direct instructions that clearly outline objectives and methodologies as robust prompt baselines, ensuring efficient and effective prompt engineering in ongoing research.
Abstract (translated)
许多最近的工作旨在通过策略提示增强大型语言模型(LLMs)的效率。特别是,通过利用LLM作为优化器,Proof of Programming (OPRO)方法在优化任务中提供了最先进的性能。在本文中,我们重新审视了OPROMpting (OPR)方法用于自动提示相对较小的LLM,如LLLaMa-2系列和Mistral 7B。我们的调查显示,在小型LLM上,OPROMpting的优化效果有限,有限的语言能力限制了优化能力。我们建议,在未来的自动提示工程中,要考虑模型的特性和计算成本。此外,对于小型LLM,我们建议使用明确说明要达到的目标和方法的直接指令作为稳健的提示基础,以确保在 ongoing研究中有高效的和有效的提示工程。
URL
https://arxiv.org/abs/2405.10276