Paper Reading AI Learner

Creative Text-to-Audio Generation via Synthesizer Programming

2024-06-01 04:08:31
Manuel Cherep, Nikhil Singh, Jessica Shand

Abstract

Neural audio synthesis methods now allow specifying ideas in natural language. However, these methods produce results that cannot be easily tweaked, as they are based on large latent spaces and up to billions of uninterpretable parameters. We propose a text-to-audio generation method that leverages a virtual modular sound synthesizer with only 78 parameters. Synthesizers have long been used by skilled sound designers for media like music and film due to their flexibility and intuitive controls. Our method, CTAG, iteratively updates a synthesizer's parameters to produce high-quality audio renderings of text prompts that can be easily inspected and tweaked. Sounds produced this way are also more abstract, capturing essential conceptual features over fine-grained acoustic details, akin to how simple sketches can vividly convey visual concepts. Our results show how CTAG produces sounds that are distinctive, perceived as artistic, and yet similarly identifiable to recent neural audio synthesis models, positioning it as a valuable and complementary tool.

Abstract (translated)

神经音频合成方法现在允许在自然语言中指定创意。然而,这些方法产生的结果很难进行微调,因为它们基于大型潜在空间和多达数十亿的无法解释的参数。我们提出了一种基于虚拟模块声音合成器的方法,该合成器只有78个参数。合成器一直以来都被有经验的音频设计师用于媒体如音乐和电影,因为它们的可伸缩性和直观的控制。我们的方法CTAG,通过迭代更新合成器的参数,产生高品质的文本提示音频渲染,这些音频可以轻松地被审查和微调。这种方式产生的声音也更抽象,捕捉到基本概念特征,与粗粒度的音频细节相似,就像简单的草图可以生动地传达视觉概念一样。我们的结果表明,CTAG产生的声音具有独特性,被认为具有艺术性,与最近神经音频合成模型产生类似的可识别性,将其定位为一种有价值且互补的工具。

URL

https://arxiv.org/abs/2406.00294

PDF

https://arxiv.org/pdf/2406.00294.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot