Paper Reading AI Learner

Comparison of fine-tuning strategies for transfer learning in medical image classification

2024-06-14 14:00:02
Ana Davila, Jacinto Colan, Yasuhisa Hasegawa

Abstract

In the context of medical imaging and machine learning, one of the most pressing challenges is the effective adaptation of pre-trained models to specialized medical contexts. Despite the availability of advanced pre-trained models, their direct application to the highly specialized and diverse field of medical imaging often falls short due to the unique characteristics of medical data. This study provides a comprehensive analysis on the performance of various fine-tuning methods applied to pre-trained models across a spectrum of medical imaging domains, including X-ray, MRI, Histology, Dermoscopy, and Endoscopic surgery. We evaluated eight fine-tuning strategies, including standard techniques such as fine-tuning all layers or fine-tuning only the classifier layers, alongside methods such as gradually unfreezing layers, regularization based fine-tuning and adaptive learning rates. We selected three well-established CNN architectures (ResNet-50, DenseNet-121, and VGG-19) to cover a range of learning and feature extraction scenarios. Although our results indicate that the efficacy of these fine-tuning methods significantly varies depending on both the architecture and the medical imaging type, strategies such as combining Linear Probing with Full Fine-tuning resulted in notable improvements in over 50% of the evaluated cases, demonstrating general effectiveness across medical domains. Moreover, Auto-RGN, which dynamically adjusts learning rates, led to performance enhancements of up to 11% for specific modalities. Additionally, the DenseNet architecture showed more pronounced benefits from alternative fine-tuning approaches compared to traditional full fine-tuning. This work not only provides valuable insights for optimizing pre-trained models in medical image analysis but also suggests the potential for future research into more advanced architectures and fine-tuning methods.

Abstract (translated)

URL

https://arxiv.org/abs/2406.10050

PDF

https://arxiv.org/pdf/2406.10050.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot