Paper Reading AI Learner

Disturbing Image Detection Using LMM-Elicited Emotion Embeddings

2024-06-18 14:41:04
Maria Tzelepi, Vasileios Mezaris

Abstract

In this paper we deal with the task of Disturbing Image Detection (DID), exploiting knowledge encoded in Large Multimodal Models (LMMs). Specifically, we propose to exploit LMM knowledge in a two-fold manner: first by extracting generic semantic descriptions, and second by extracting elicited emotions. Subsequently, we use the CLIP's text encoder in order to obtain the text embeddings of both the generic semantic descriptions and LMM-elicited emotions. Finally, we use the aforementioned text embeddings along with the corresponding CLIP's image embeddings for performing the DID task. The proposed method significantly improves the baseline classification accuracy, achieving state-of-the-art performance on the augmented Disturbing Image Detection dataset.

Abstract (translated)

在本文中,我们处理干扰图像检测(DID)的任务,利用大型多模态模型(LMM)中编码的知识。具体来说,我们通过两种方式利用LMM的知识:首先通过提取通用的语义描述,其次是通过提取预期情感。随后,我们使用CLIP的文本编码器来获得通用语义描述和LMM引起的情感的文本嵌入。最后,我们将上述文本嵌入与相应的CLIP图像嵌入一起用于执行DID任务。与基线分类准确率相比,所提出的方法显著提高了基线分类准确率,在增强的DID数据集上实现了最先进的性能。

URL

https://arxiv.org/abs/2406.12668

PDF

https://arxiv.org/pdf/2406.12668.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot