Paper Reading AI Learner

GroPrompt: Efficient Grounded Prompting and Adaptation for Referring Video Object Segmentation

2024-06-18 17:54:17
Ci-Siang Lin, I-Jieh Liu, Min-Hung Chen, Chien-Yi Wang, Sifei Liu, Yu-Chiang Frank Wang


Referring Video Object Segmentation (RVOS) aims to segment the object referred to by the query sentence throughout the entire video. Most existing methods require end-to-end training with dense mask annotations, which could be computation-consuming and less scalable. In this work, we aim to efficiently adapt foundation segmentation models for addressing RVOS from weak supervision with the proposed Grounded Prompting (GroPrompt) framework. More specifically, we propose Text-Aware Prompt Contrastive Learning (TAP-CL) to enhance the association between the position prompts and the referring sentences with only box supervisions, including Text-Contrastive Prompt Learning (TextCon) and Modality-Contrastive Prompt Learning (ModalCon) at frame level and video level, respectively. With the proposed TAP-CL, our GroPrompt framework can generate temporal-consistent yet text-aware position prompts describing locations and movements for the referred object from the video. The experimental results in the standard RVOS benchmarks (Ref-YouTube-VOS, Ref-DAVIS17, A2D-Sentences, and JHMDB-Sentences) demonstrate the competitive performance of our proposed GroPrompt framework given only bounding box weak supervisions.

Abstract (translated)

翻译: Referring Video Object Segmentation (RVOS) 的目的是在整个视频中根据查询句子所指的对象进行分割。大多数现有方法需要使用密集掩码注释进行端到端的训练,这可能会消耗计算资源且不够可扩展。在这项工作中,我们旨在通过所提出的 Grounded Prompting (GroPrompt) 框架, efficiently 将基础分割模型适应弱监督的 RVOS。具体来说,我们提出了 Text-Aware Prompt Contrastive Learning (TAP-CL) 来增强位置提示与参考句子的关联,仅包括文本对比学习和帧级别和视频级别的模式对比学习。通过 TAP-CL,我们的 GroPrompt 框架可以生成描述从视频中指代对象的位置和运动的语义一致的时空提示。在标准 RVOS 基准测试(Ref-YouTube-VOS,Ref-DAVIS17,A2D-Sentences 和 JHMDB-Sentences)中,实验结果表明,仅使用边界框弱监督,我们的 GroPrompt 框架具有竞争力的性能。



3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot