Paper Reading AI Learner

Emotion-driven Piano Music Generation via Two-stage Disentanglement and Functional Representation

2024-07-30 16:29:28
Jingyue Huang, Ke Chen, Yi-Hsuan Yang

Abstract

Managing the emotional aspect remains a challenge in automatic music generation. Prior works aim to learn various emotions at once, leading to inadequate modeling. This paper explores the disentanglement of emotions in piano performance generation through a two-stage framework. The first stage focuses on valence modeling of lead sheet, and the second stage addresses arousal modeling by introducing performance-level attributes. To further capture features that shape valence, an aspect less explored by previous approaches, we introduce a novel functional representation of symbolic music. This representation aims to capture the emotional impact of major-minor tonality, as well as the interactions among notes, chords, and key signatures. Objective and subjective experiments validate the effectiveness of our framework in both emotional valence and arousal modeling. We further leverage our framework in a novel application of emotional controls, showing a broad potential in emotion-driven music generation.

Abstract (translated)

管理情感方面仍然是一个自动音乐生成的挑战。先前的作品试图同时学习各种情感,导致模型不足。本文通过两个阶段的框架探讨了钢琴演奏生成中情感的解耦。第一阶段集中在主旋律模型的情感度量,第二阶段通过引入表现级别属性来解决情感建模。为了更好地捕捉塑造情感的特征,我们引入了一种新的符号音乐功能表示。这种表示旨在捕捉大调小调音阶的情感影响,以及音符、和弦和音高的相互作用。客观和主观实验证实了我们在情感值和情感建模方面的框架的有效性。我们还在一个新的情感控制应用中利用了我们的框架,展示了在情感驱动音乐生成方面广泛的应用潜力。

URL

https://arxiv.org/abs/2407.20955

PDF

https://arxiv.org/pdf/2407.20955.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot