Paper Reading AI Learner

DuA: Dual Attentive Transformer in Long-Term Continuous EEG Emotion Analysis

2024-07-30 03:31:03
Yue Pan, Qile Liu, Qing Liu, Li Zhang, Gan Huang, Xin Chen, Fali Li, Peng Xu, Zhen Liang

Abstract

Affective brain-computer interfaces (aBCIs) are increasingly recognized for their potential in monitoring and interpreting emotional states through electroencephalography (EEG) signals. Current EEG-based emotion recognition methods perform well with short segments of EEG data. However, these methods encounter significant challenges in real-life scenarios where emotional states evolve over extended periods. To address this issue, we propose a Dual Attentive (DuA) transformer framework for long-term continuous EEG emotion analysis. Unlike segment-based approaches, the DuA transformer processes an entire EEG trial as a whole, identifying emotions at the trial level, referred to as trial-based emotion analysis. This framework is designed to adapt to varying signal lengths, providing a substantial advantage over traditional methods. The DuA transformer incorporates three key modules: the spatial-spectral network module, the temporal network module, and the transfer learning module. The spatial-spectral network module simultaneously captures spatial and spectral information from EEG signals, while the temporal network module detects temporal dependencies within long-term EEG data. The transfer learning module enhances the model's adaptability across different subjects and conditions. We extensively evaluate the DuA transformer using a self-constructed long-term EEG emotion database, along with two benchmark EEG emotion databases. On the basis of the trial-based leave-one-subject-out cross-subject cross-validation protocol, our experimental results demonstrate that the proposed DuA transformer significantly outperforms existing methods in long-term continuous EEG emotion analysis, with an average enhancement of 5.28%.

Abstract (translated)

情感脑-计算机接口(aBCIs)越来越被认为是通过电生理学(EEG)信号监测和解释情感状态的潜力。目前基于EEG数据的情感识别方法在短时间EEG数据上表现良好。然而,在现实生活中,情感状态会随着长时间的发展而演变,这些方法遇到了很大的挑战。为了解决这个问题,我们提出了一个双注意(DuA)Transformer框架来进行长期连续EEG情感分析。与基于片段的方法不同,DuA Transformer处理整个EEG试题为一个整体,在试题级别上识别情感,称为试题级情感分析。这个框架旨在适应不同的信号长度,在传统方法中具有很大的优势。DuA Transformer包括三个关键模块:空间-频谱网络模块、时间网络模块和迁移学习模块。空间-频谱网络模块同时捕获EEG信号的空间和频谱信息,而时间网络模块检测长期EEG数据中的时间依赖关系。迁移学习模块提高了模型的适应性,跨不同受试者和条件进行。我们通过自构建的长期EEG情感数据库以及两个基准EEG情感数据库,对DuA Transformer进行了广泛评估。基于试题级跨受试者交叉验证协议,我们的实验结果表明,与现有方法相比,所提出的DuA Transformer在长期连续EEG情感分析中显著表现出优势,平均增益为5.28%。

URL

https://arxiv.org/abs/2407.20519

PDF

https://arxiv.org/pdf/2407.20519.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot