Paper Reading AI Learner

PhysMamba: Leveraging Dual-Stream Cross-Attention SSD for Remote Physiological Measurement

2024-08-02 07:52:28
Zhixin Yan, Yan Zhong, Wenjun Zhang, Lin Shu, Hongbin Xu, Wenxiong Kang

Abstract

Remote Photoplethysmography (rPPG) is a non-contact technique for extracting physiological signals from facial videos, used in applications like emotion monitoring, medical assistance, and anti-face spoofing. Unlike controlled laboratory settings, real-world environments often contain motion artifacts and noise, affecting the performance of existing methods. To address this, we propose PhysMamba, a dual-stream time-frequency interactive model based on Mamba. PhysMamba integrates the state-of-the-art Mamba-2 model and employs a dual-stream architecture to learn diverse rPPG features, enhancing robustness in noisy conditions. Additionally, we designed the Cross-Attention State Space Duality (CASSD) module to improve information exchange and feature complementarity between the two streams. We validated PhysMamba using PURE, UBFC-rPPG and MMPD. Experimental results show that PhysMamba achieves state-of-the-art performance across various scenarios, particularly in complex environments, demonstrating its potential in practical remote heart rate monitoring applications.

Abstract (translated)

远距离心率测量(rPPG)是一种非接触技术,用于从面部视频中提取生理信号,应用于情感监测、医疗协助和反伪造应用。与实验室控制环境不同,现实世界环境通常包含运动伪迹和噪声,影响现有方法的性能。为了解决这个问题,我们提出了 PhysMamba,一种基于 Mamba 的双流时频交互模型。 PhysMamba 集成了最先进的 Mamba-2 模型,并采用双流架构学习多样 rPPG 特征,提高了在噪音环境中的鲁棒性。此外,我们还设计了 Cross-Attention State Space Duality(CASSD)模块,以提高两个流之间的信息交流和特征互补。我们使用 PURE、UBFC-rPPG 和 MMPD 对 PhysMamba 进行验证。实验结果表明,PhysMamba 在各种场景中均取得了与最新技术相当的表现,尤其是在复杂环境中,这表明其在实际远程心率监测应用中的巨大潜力。

URL

https://arxiv.org/abs/2408.01077

PDF

https://arxiv.org/pdf/2408.01077.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot