Paper Reading AI Learner

Toward Efficient Deep Blind RAW Image Restoration

2024-09-26 18:34:37
Marcos V. Conde, Florin Vasluianu, Radu Timofte

Abstract

Multiple low-vision tasks such as denoising, deblurring and super-resolution depart from RGB images and further reduce the degradations, improving the quality. However, modeling the degradations in the sRGB domain is complicated because of the Image Signal Processor (ISP) transformations. Despite of this known issue, very few methods in the literature work directly with sensor RAW images. In this work we tackle image restoration directly in the RAW domain. We design a new realistic degradation pipeline for training deep blind RAW restoration models. Our pipeline considers realistic sensor noise, motion blur, camera shake, and other common degradations. The models trained with our pipeline and data from multiple sensors, can successfully reduce noise and blur, and recover details in RAW images captured from different cameras. To the best of our knowledge, this is the most exhaustive analysis on RAW image restoration. Code available at this https URL

Abstract (translated)

多项低视力任务(例如去噪、去模糊和超分辨率)从RGB图像中分离出来,并进一步减少了降解,提高了质量。然而,在sRGB域中建模降解是一个复杂的问题,因为Image Signal Processor(ISP)变换。尽管如此,在文献中很少有直接处理传感器RAW图像的方法。在这项工作中,我们直接在RAW域处理图像修复。我们设计了一个新的真实感降解管道,用于训练深度盲RAW修复模型。我们的管道考虑了真实的传感器噪声、运动模糊、相机振动和其他常见降解。使用我们这个管道训练的模型和来自多个传感器的数据,可以成功减少噪声和模糊,并从不同相机捕捉到的RAW图像中恢复细节。据我们所知,这是关于RAW图像修复的最详尽分析。代码可在此处访问:https://www.xxxxxxx.com/

URL

https://arxiv.org/abs/2409.18204

PDF

https://arxiv.org/pdf/2409.18204.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot