Paper Reading AI Learner

Natural Language Generation for Visualizations: State of the Art, Challenges and Future Directions

2024-09-29 15:53:18
Enamul Hoque, Mohammed Saidul Islam

Abstract

Natural language and visualization are two complementary modalities of human communication that play a crucial role in conveying information effectively. While visualizations help people discover trends, patterns, and anomalies in data, natural language descriptions help explain these insights. Thus, combining text with visualizations is a prevalent technique for effectively delivering the core message of the data. Given the rise of natural language generation (NLG), there is a growing interest in automatically creating natural language descriptions for visualizations, which can be used as chart captions, answering questions about charts, or telling data-driven stories. In this survey, we systematically review the state of the art on NLG for visualizations and introduce a taxonomy of the problem. The NLG tasks fall within the domain of Natural Language Interfaces (NLI) for visualization, an area that has garnered significant attention from both the research community and industry. To narrow down the scope of the survey, we primarily concentrate on the research works that focus on text generation for visualizations. To characterize the NLG problem and the design space of proposed solutions, we pose five Wh-questions, why and how NLG tasks are performed for visualizations, what the task inputs and outputs are, as well as where and when the generated texts are integrated with visualizations. We categorize the solutions used in the surveyed papers based on these "five Wh-questions." Finally, we discuss the key challenges and potential avenues for future research in this domain.

Abstract (translated)

自然语言和可视化是人类交流的两种互补维度,在传达信息方面起着关键作用。虽然可视化帮助人们发现数据中的趋势、模式和异常,自然语言描述则有助于解释这些洞见。因此,将文本与可视化相结合是一种普遍的技巧,可以有效地传递数据的核心信息。随着自然语言生成(NLG)的兴起,人们对自动为可视化创建自然语言描述产生了浓厚兴趣,这些描述可以用于图表标题、回答关于图表的问题或讲述数据驱动的故事。在本次调查中,我们系统地回顾了NLG在可视化领域的前沿研究,并引入了一个分类来解决这个问题。NLG任务属于自然语言交互(NLI)可视化域,该领域从研究社区和产业界都受到了很大的关注。为了缩小调查范围,我们主要关注关注研究重点在文本生成上的可视化作品。通过提出五个“为什么以及如何”的问题,我们试图阐明NLG任务如何为可视化执行,任务输入和输出是什么,以及生成的文本如何与可视化结合。我们根据这些“五个为什么”对调查论文中使用的解决方案进行了分类。最后,我们讨论了该领域未来研究的关键挑战和潜在方向。

URL

https://arxiv.org/abs/2409.19747

PDF

https://arxiv.org/pdf/2409.19747.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot