Paper Reading AI Learner

Grounding Large Language Models In Embodied Environment With Imperfect World Models

2024-10-03 17:55:09
Haolan Liu, Jishen Zhao

Abstract

Despite a widespread success in various applications, large language models (LLMs) often stumble when tackling basic physical reasoning or executing robotics tasks, due to a lack of direct experience with the physical nuances of the real world. To address these issues, we propose a Grounding Large language model with Imperfect world MOdel (GLIMO), which utilizes proxy world models such as simulators to collect and synthesize trining data. GLIMO incorporates an LLM agent-based data generator to automatically create high-quality and diverse instruction datasets. The generator includes an iterative self-refining module for temporally consistent experience sampling, a diverse set of question-answering instruction seeds, and a retrieval-augmented generation module for reflecting on prior experiences. Comprehensive experiments show that our approach improve the performance of strong open-source LLMs like LLaMA-3 with a performance boost of 2.04 $\times$, 1.54 $\times$, and 1.82 $\times$ across three different benchmarks, respectively. The performance is able to compete with or surpass their larger counterparts such as GPT-4.

Abstract (translated)

尽管在各种应用中取得了广泛的成功,大型语言模型(LLMs)在处理基本的物理推理或执行机器人任务时常常会陷入困境,因为它们缺乏与现实世界物理细微差别的第一手经验。为解决这些问题,我们提出了一个基于代理世界模型的接地大型语言模型(GLIMO),该模型利用模拟器等代理世界模型收集和合成训练数据。GLIMO包括一个基于LLM的代理程序数据生成器,用于自动创建高质量和多样化的指令数据集。生成器包括一个迭代自校正的时序一致性经验采样模块、一个多样的问题回答指令种子集和一个反映先验经验的检索增强生成模块。 全面的实验证明,我们的方法在三个不同的基准测试中分别将LLM-3的性能提高了2.04倍、1.54倍和1.82倍。性能能够与或超过其较大 counterparts(如 GPT-4)竞争,甚至有些超过它们。

URL

https://arxiv.org/abs/2410.02742

PDF

https://arxiv.org/pdf/2410.02742.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot