Paper Reading AI Learner

Knowledge Graph Enhanced Language Agents for Recommendation

2024-10-25 15:25:36
Taicheng Guo, Chaochun Liu, Hai Wang, Varun Mannam, Fang Wang, Xin Chen, Xiangliang Zhang, Chandan K. Reddy

Abstract

Language agents have recently been used to simulate human behavior and user-item interactions for recommendation systems. However, current language agent simulations do not understand the relationships between users and items, leading to inaccurate user profiles and ineffective recommendations. In this work, we explore the utility of Knowledge Graphs (KGs), which contain extensive and reliable relationships between users and items, for recommendation. Our key insight is that the paths in a KG can capture complex relationships between users and items, eliciting the underlying reasons for user preferences and enriching user profiles. Leveraging this insight, we propose Knowledge Graph Enhanced Language Agents(KGLA), a framework that unifies language agents and KG for recommendation systems. In the simulated recommendation scenario, we position the user and item within the KG and integrate KG paths as natural language descriptions into the simulation. This allows language agents to interact with each other and discover sufficient rationale behind their interactions, making the simulation more accurate and aligned with real-world cases, thus improving recommendation performance. Our experimental results show that KGLA significantly improves recommendation performance (with a 33%-95% boost in NDCG@1 among three widely used benchmarks) compared to the previous best baseline method.

Abstract (translated)

最近,语言代理被用于模拟推荐系统中的人类行为和用户-项目互动。然而,当前的语言代理仿真未能理解用户与项目之间的关系,导致用户画像不准确且推荐效果不佳。在此研究中,我们探索了知识图谱(KGs)在推荐中的效用,这些知识图谱包含广泛且可靠地描述用户与项目之间关系的信息。我们的关键见解是,知识图谱中的路径能够捕捉到用户与项目之间的复杂关系,揭示用户偏好的潜在原因,并丰富用户画像。基于这一洞见,我们提出了Knowledge Graph Enhanced Language Agents (KGLA),一个统一语言代理和KG用于推荐系统的框架。在模拟推荐场景中,我们将用户和项目置于知识图谱内,并将KG路径作为自然语言描述整合到仿真中。这使得语言代理能够彼此互动并发现其互动背后的充分理由,从而使仿真更准确,更贴近现实情况,进而提高推荐性能。我们的实验结果显示,与之前的最佳基准方法相比,KGLA显著提高了推荐性能(在三个广泛使用的基准上,NDCG@1的提升幅度为33%-95%)。

URL

https://arxiv.org/abs/2410.19627

PDF

https://arxiv.org/pdf/2410.19627.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot