Paper Reading AI Learner

Intelligent Understanding of Large Language Models in Traditional Chinese Medicine Based on Prompt Engineering Framework

2024-10-25 10:24:30
Yirui Chen, Qinyu Xiao, Jia Yi, Jing Chen, Mengyang Wang

Abstract

This paper explores the application of prompt engineering to enhance the performance of large language models (LLMs) in the domain of Traditional Chinese Medicine (TCM). We propose TCM-Prompt, a framework that integrates various pre-trained language models (PLMs), templates, tokenization, and verbalization methods, allowing researchers to easily construct and fine-tune models for specific TCM-related tasks. We conducted experiments on disease classification, syndrome identification, herbal medicine recommendation, and general NLP tasks, demonstrating the effectiveness and superiority of our approach compared to baseline methods. Our findings suggest that prompt engineering is a promising technique for improving the performance of LLMs in specialized domains like TCM, with potential applications in digitalization, modernization, and personalized medicine.

Abstract (translated)

本文探讨了将提示工程应用于提高大型语言模型(LLMs)在中医药(TCM)领域性能的应用。我们提出了TCM-Prompt框架,该框架整合了各种预训练语言模型(PLMs)、模板、分词和具体化方法,使研究人员能够轻松构建并调整用于特定中医药相关任务的模型。我们在疾病分类、症候识别、草药推荐以及一般自然语言处理任务上进行了实验,结果展示了我们方法的有效性和优越性,相较于基线方法更有优势。我们的研究发现表明,在中医药等专业领域中,提示工程是一种有望提高大型语言模型性能的技术,并且在数字化、现代化和个性化医疗方面具有潜在应用价值。

URL

https://arxiv.org/abs/2410.19451

PDF

https://arxiv.org/pdf/2410.19451.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot