Paper Reading AI Learner

Maintaining Informative Coherence: Migrating Hallucinations in Large Language Models via Absorbing Markov Chains

2024-10-27 04:51:18
Jiemin Wu, Songning Lai, Ruiqiang Xiao, Tianlang Xue, Jiayu Yang, Yutao Yue

Abstract

Large Language Models (LLMs) are powerful tools for text generation, translation, and summarization, but they often suffer from hallucinations-instances where they fail to maintain the fidelity and coherence of contextual information during decoding, sometimes overlooking critical details due to their sampling strategies and inherent biases from training data and fine-tuning discrepancies. These hallucinations can propagate through the web, affecting the trustworthiness of information disseminated online. To address this issue, we propose a novel decoding strategy that leverages absorbing Markov chains to quantify the significance of contextual information and measure the extent of information loss during generation. By considering all possible paths from the first to the last token, our approach enhances the reliability of model outputs without requiring additional training or external data. Evaluations on datasets including TruthfulQA, FACTOR, and HaluEval highlight the superior performance of our method in mitigating hallucinations, underscoring the necessity of ensuring accurate information flow in web-based applications.

Abstract (translated)

大型语言模型(LLMs)是文本生成、翻译和摘要的强大工具,但它们经常会出现幻觉现象——即在解码过程中无法保持上下文信息的保真度和连贯性,有时会因采样策略及训练数据和微调差异带来的固有偏见而忽略关键细节。这些幻觉现象可能在网络中传播,影响在线发布的信息的信任度。为了解决这一问题,我们提出了一种新的解码策略,该策略利用吸收马尔可夫链来量化上下文信息的重要性,并衡量生成过程中信息损失的程度。通过考虑从第一个到最后一个标记的所有可能路径,我们的方法提高了模型输出的可靠性,而无需额外训练或外部数据。在包括TruthfulQA、FACTOR和HaluEval在内的数据集上的评估显示,我们的方法在减轻幻觉方面表现出色,强调了确保基于网络应用程序中信息准确流动的重要性。

URL

https://arxiv.org/abs/2410.20340

PDF

https://arxiv.org/pdf/2410.20340.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot