Paper Reading AI Learner

GPRec: Bi-level User Modeling for Deep Recommenders

2024-10-28 04:49:05
Yejing Wang, Dong Xu, Xiangyu Zhao, Zhiren Mao, Peng Xiang, Ling Yan, Yao Hu, Zijian Zhang, Xuetao Wei, Qidong Liu

Abstract

GPRec explicitly categorizes users into groups in a learnable manner and aligns them with corresponding group embeddings. We design the dual group embedding space to offer a diverse perspective on group preferences by contrasting positive and negative patterns. On the individual level, GPRec identifies personal preferences from ID-like features and refines the obtained individual representations to be independent of group ones, thereby providing a robust complement to the group-level modeling. We also present various strategies for the flexible integration of GPRec into various DRS models. Rigorous testing of GPRec on three public datasets has demonstrated significant improvements in recommendation quality.

Abstract (translated)

GPRec 以可学习的方式明确地将用户分类为不同的组,并将这些组与相应的组嵌入对齐。我们设计了双重组嵌入空间,通过对比正负模式来提供多元化的组偏好视角。在个体层面,GPRec 能够从类似ID的特征中识别个人偏好,并优化获得的个体表示,使其独立于组表示,从而为组级别建模提供强大的补充。此外,我们还提出了一些灵活地将 GPRec 整合到各种DRS模型中的策略。通过对三个公开数据集进行严格的测试,GPRec 显示出了显著提高推荐质量的效果。

URL

https://arxiv.org/abs/2410.20730

PDF

https://arxiv.org/pdf/2410.20730.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot