Paper Reading AI Learner

Analyzing Multimodal Interaction Strategies for LLM-Assisted Manipulation of 3D Scenes

2024-10-29 16:15:59
Junlong Chen, Jens Grubert, Per Ola Kristensson

Abstract

As more applications of large language models (LLMs) for 3D content for immersive environments emerge, it is crucial to study user behaviour to identify interaction patterns and potential barriers to guide the future design of immersive content creation and editing systems which involve LLMs. In an empirical user study with 12 participants, we combine quantitative usage data with post-experience questionnaire feedback to reveal common interaction patterns and key barriers in LLM-assisted 3D scene editing systems. We identify opportunities for improving natural language interfaces in 3D design tools and propose design recommendations for future LLM-integrated 3D content creation systems. Through an empirical study, we demonstrate that LLM-assisted interactive systems can be used productively in immersive environments.

Abstract (translated)

随着大型语言模型(LLMs)在沉浸式环境中用于创建3D内容的应用越来越多,研究用户行为以识别交互模式和潜在障碍变得至关重要。这可以指导未来涉及LLMs的沉浸式内容创作与编辑系统的设计。在一个包含12名参与者的实证用户研究中,我们将定量使用数据与体验后的问卷反馈相结合,揭示了在LLM辅助的3D场景编辑系统中的常见交互模式及主要障碍。我们发现改进3D设计工具中文本界面的机会,并为未来集成LLMs的3D内容创作系统提出设计建议。通过实证研究,我们展示了LLM辅助的交互系统可以在沉浸式环境中被有效使用。

URL

https://arxiv.org/abs/2410.22177

PDF

https://arxiv.org/pdf/2410.22177.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot