Paper Reading AI Learner

Continuous Spatio-Temporal Memory Networks for 4D Cardiac Cine MRI Segmentation

2024-10-30 16:45:59
Meng Ye, Bingyu Xin, Leon Axel, Dimitris Metaxas

Abstract

Current cardiac cine magnetic resonance image (cMR) studies focus on the end diastole (ED) and end systole (ES) phases, while ignoring the abundant temporal information in the whole image sequence. This is because whole sequence segmentation is currently a tedious process and inaccurate. Conventional whole sequence segmentation approaches first estimate the motion field between frames, which is then used to propagate the mask along the temporal axis. However, the mask propagation results could be prone to error, especially for the basal and apex slices, where through-plane motion leads to significant morphology and structural change during the cardiac cycle. Inspired by recent advances in video object segmentation (VOS), based on spatio-temporal memory (STM) networks, we propose a continuous STM (CSTM) network for semi-supervised whole heart and whole sequence cMR segmentation. Our CSTM network takes full advantage of the spatial, scale, temporal and through-plane continuity prior of the underlying heart anatomy structures, to achieve accurate and fast 4D segmentation. Results of extensive experiments across multiple cMR datasets show that our method can improve the 4D cMR segmentation performance, especially for the hard-to-segment regions.

Abstract (translated)

当前的心脏动态磁共振成像(cMR)研究主要关注舒张末期(ED)和收缩末期(ES)的相位,而忽略了整个图像序列中丰富的时序信息。这是由于目前对整个序列进行分割是一个繁琐且不准确的过程。传统的方法首先估计帧之间的运动场,然后使用该运动场沿时间轴传播掩模。然而,这种掩模传播的结果容易出错,尤其是在基底和心尖切片上,因平面外的运动会导致心脏周期中的形态和结构发生显著变化。受到基于时空记忆(STM)网络在视频对象分割(VOS)方面最新进展的启发,我们提出了一种连续时空记忆(CSTM)网络用于半监督下的整个心脏及整段序列cMR分割。我们的CSTM网络充分利用了潜在心肌解剖结构的空间、尺度、时序和平面外延续性先验知识,以实现准确且快速的4D分割。在多个cMR数据集上的广泛实验结果表明,我们提出的方法能够提高4D cMR分割性能,特别是对于难以分割的区域有显著改善。

URL

https://arxiv.org/abs/2410.23191

PDF

https://arxiv.org/pdf/2410.23191.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot