Paper Reading AI Learner

Breaking the Reclustering Barrier in Centroid-based Deep Clustering

2024-11-04 17:05:37
Lukas Miklautz, Timo Klein, Kevin Sidak, Collin Leiber, Thomas Lang, Andrii Shkabrii, Sebastian Tschiatschek, Claudia Plant

Abstract

This work investigates an important phenomenon in centroid-based deep clustering (DC) algorithms: Performance quickly saturates after a period of rapid early gains. Practitioners commonly address early saturation with periodic reclustering, which we demonstrate to be insufficient to address performance plateaus. We call this phenomenon the "reclustering barrier" and empirically show when the reclustering barrier occurs, what its underlying mechanisms are, and how it is possible to Break the Reclustering Barrier with our algorithm BRB. BRB avoids early over-commitment to initial clusterings and enables continuous adaptation to reinitialized clustering targets while remaining conceptually simple. Applying our algorithm to widely-used centroid-based DC algorithms, we show that (1) BRB consistently improves performance across a wide range of clustering benchmarks, (2) BRB enables training from scratch, and (3) BRB performs competitively against state-of-the-art DC algorithms when combined with a contrastive loss. We release our code and pre-trained models at this https URL .

Abstract (translated)

这项工作探讨了基于质心的深度聚类(DC)算法中的一个重要现象:性能在初期快速提升后迅速饱和。实践者通常通过定期重新聚类来应对早期饱和,但我们证明这不足以解决性能平台期的问题。我们称这一现象为“重新聚类障碍”,并从实证上展示了重新聚类障碍何时发生、其背后机制是什么以及如何使用我们的算法BRB打破这种障碍。BRB避免了对初始聚类的过早承诺,并能够在重新初始化聚类目标时持续适应,同时保持概念上的简洁性。将我们的算法应用于广泛使用的基于质心的DC算法中,我们展示了:(1) BRB在广泛的聚类基准测试中一致提升性能;(2) BRB支持从头开始训练;(3) 当与对比损失结合使用时,BRB可以与最先进的DC算法竞争。我们在[此链接](https://www.example.com/)发布了我们的代码和预训练模型。

URL

https://arxiv.org/abs/2411.02275

PDF

https://arxiv.org/pdf/2411.02275.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot