Paper Reading AI Learner

Provenance: A Light-weight Fact-checker for Retrieval Augmented LLM Generation Output

2024-11-01 20:44:59
Hithesh Sankararaman, Mohammed Nasheed Yasin, Tanner Sorensen, Alessandro Di Bari, Andreas Stolcke

Abstract

We present a light-weight approach for detecting nonfactual outputs from retrieval-augmented generation (RAG). Given a context and putative output, we compute a factuality score that can be thresholded to yield a binary decision to check the results of LLM-based question-answering, summarization, or other systems. Unlike factuality checkers that themselves rely on LLMs, we use compact, open-source natural language inference (NLI) models that yield a freely accessible solution with low latency and low cost at run-time, and no need for LLM fine-tuning. The approach also enables downstream mitigation and correction of hallucinations, by tracing them back to specific context chunks. Our experiments show high area under the ROC curve (AUC) across a wide range of relevant open source datasets, indicating the effectiveness of our method for fact-checking RAG output.

Abstract (translated)

我们提出了一种轻量级的方法,用于检测检索增强生成(RAG)中的非事实性输出。给定一个上下文和假设的输出,我们会计算一个事实得分,该得分可以通过设定阈值来产生二元决策,以检查基于大语言模型(LLM)的问题回答、摘要或其他系统的输出结果。与依赖于大语言模型的事实核查器不同,我们使用紧凑且开源的自然语言推理(NLI)模型,这提供了一个低延迟和低成本的解决方案,并在运行时无需对大语言模型进行微调。该方法还可以通过追溯到具体的上下文片段来实现下游幻觉的缓解和修正。我们的实验显示,在一系列相关的开源数据集上具有高ROC曲线下的面积(AUC),表明这种方法对于检测RAG输出的事实性是有效的。

URL

https://arxiv.org/abs/2411.01022

PDF

https://arxiv.org/pdf/2411.01022.pdf


Tags
3D Action Action_Localization Action_Recognition Activity Adversarial Agent Attention Autonomous Bert Boundary_Detection Caption Chat Classification CNN Compressive_Sensing Contour Contrastive_Learning Deep_Learning Denoising Detection Dialog Diffusion Drone Dynamic_Memory_Network Edge_Detection Embedding Embodied Emotion Enhancement Face Face_Detection Face_Recognition Facial_Landmark Few-Shot Gait_Recognition GAN Gaze_Estimation Gesture Gradient_Descent Handwriting Human_Parsing Image_Caption Image_Classification Image_Compression Image_Enhancement Image_Generation Image_Matting Image_Retrieval Inference Inpainting Intelligent_Chip Knowledge Knowledge_Graph Language_Model LLM Matching Medical Memory_Networks Multi_Modal Multi_Task NAS NMT Object_Detection Object_Tracking OCR Ontology Optical_Character Optical_Flow Optimization Person_Re-identification Point_Cloud Portrait_Generation Pose Pose_Estimation Prediction QA Quantitative Quantitative_Finance Quantization Re-identification Recognition Recommendation Reconstruction Regularization Reinforcement_Learning Relation Relation_Extraction Represenation Represenation_Learning Restoration Review RNN Robot Salient Scene_Classification Scene_Generation Scene_Parsing Scene_Text Segmentation Self-Supervised Semantic_Instance_Segmentation Semantic_Segmentation Semi_Global Semi_Supervised Sence_graph Sentiment Sentiment_Classification Sketch SLAM Sparse Speech Speech_Recognition Style_Transfer Summarization Super_Resolution Surveillance Survey Text_Classification Text_Generation Time_Series Tracking Transfer_Learning Transformer Unsupervised Video_Caption Video_Classification Video_Indexing Video_Prediction Video_Retrieval Visual_Relation VQA Weakly_Supervised Zero-Shot